
CPSC 449 Honours Thesis Proposal

Jonathan Chan

1 Introduction

Coq and other dependently-typed proof assistants rely on termination-checking to ensure soundness of proofs.
Unfortunately, the current termination checkers are fragile and sensitive to the syntactic structure of code
rather than the algorithm it computes. We propose to make them more robust and intuitive by using sized
types.

1.1 Termination in Coq

Part of what makes Coq’s termination checker fragile and unintuitive is that it requires that recursive
functions are guarded by destructors [3]. This requires that the argument to a recursive call must be a
structurally-recursive component of the corresponding parameter of the function, guaranteeing that recursive
calls occur only on ever-smaller inductive terms. For example, given a definition of the natural numbers as
the following:

Inductive Nat :=

| O: Nat (* zero *)

| S: Nat -> Nat. (* + 1 *)

The following function shrink is accepted by Coq, as m is a component of n = S m, but grow is not
accepted.

Fixpoint shrink n :=

match n with

| O => O

| S m => shrink m

end.

Fixpoint grow n := grow (S n).

Calls to other functions inside a recursive call are unfolded by replacing them with their definitions as
needed when performing the termination check. For instance, if shrink were instead defined as follows:

Fixpoint shrink n :=

match n with

| O => O

| S m => shrink (ident m)

end.

Definition ident n :=

match n with

| O => n

| S m => n

end.

Unfolding might lead to:

Fixpoint shrink' n :=

match n with

| O => O

| S n' =>

match n' with

| O => shrink' n'

| S m => shrink' n'

1



end

end.

Coq accepts this since n’ is a component of n = S n’. However, suppose we defined ident as the
following:

Definition ident n :=

match n with

| O => O

| S m => S m

end.

Then the recursive calls in shrink would be shrink O and shrink (S m), but Coq does not accept this
since O and S m are not explicitly structurally-smaller components of n. Thus the termination checker is
fragile in that slightly changing the definition of ident in a semantically-equivalent way breaks the accep-
tance of the program, and is unintuitive in that users need to understand details of how the termination
checker works in order to choose the correct definition of ident that will be accepted despite the two being
semantically equivalent.

1.2 Termination-Checking using Sized Types

The key idea behind structural termination checking is that inductive objects have some size to them and
that recursive calls are done on objects with a smaller size. Sized types [4] formalizes this notion of size
and separates it from the structure of the object, instead attaching size information to its type. The size of
a type counts the maximum number of layers of constructors that objects of that type have. For instance,
for objects of type Nat, the sized type Nati would contain all natural numbers less than i. Equivalently, an
object with i layers of constructors has type of size at least i, so we would have:

O: Nat1, Nat2, Nat3, . . .

S O: Nat2, Nat3, . . .

S (S O): Nat3, . . .

And so on, with Nat∞ being the type of all natural numbers. Similarly, if we define polymorphic lists as
follows:

Inductive List t :=

| Nil: List1 t

| Cons: ∀i. t -> Listi t -> Listi+1 t.

Giving objects as precise a type as possible by choosing the smallest allowable size, lists of zeroes would
then have types:

Nil: List1 Nat

Cons O Nil: List2 Nat

Cons O (Cons O Nil): List3 Nat

Constructor and function types are annotated with size indices (like Cons above), which can only be size
variables, sums of size variables, constant multiples of size variables, or ∞. As an example, the type of a
function that appends two lists might be:

append: ∀i, j. ∀t. Listi t → Listj+1 t → Listi+j t

2



Notice that the size of the type of the resulting list is one smaller than the sum of the sizes of the input
lists since each input list ends in a Nil constructor and the appended list only needs one Nil. Functions
that produce values whose type sizes cannot be expressed in terms of additions or constant multiples would
require a return type indexed by ∞, such as the factorial function.

factorial: ∀i. Nati → Nat∞

Termination checking is then done by ensuring that the type of the argument to a recursive call has a
sized type smaller than that of the parameter of the function. For instance, the types of shrink and ident

from section 1.1 would be:

shrink: ∀i. Nati → Nat1

ident: ∀i. Nati → Nati

Suppose that we assume the type of the argument n of shrink to be Nati+1. Then the component m

would have type Nati, the value from ident m would also have type Nati, and the argument to the recursive
call is indeed smaller. Notice that we were able to determine this without needing to unfold the definition of
ident; as long as size constraints are satisfied, termination is ensured. Since size indices are linear integer
polynomials of size variables, solving these constraints is implemented as solving a system of integer linear
inequalities, which can be done in O(mn2) [5], where m is the number of constraints and n is the number of
size variables.

1.3 Inferring Sizes with Successor Sized Types

With sized types, structural termination checking is replaced by sized termination checking, reducing the
fragility of the checker and easing reasoning about the termination of programs. However, it introduces the
burden of size annotation on the user, who must now learn to add sizes to the types of functions correctly
and with sufficient precision. It would be far preferable to have size information inferred rather than be
specified by annotations to maintain usability. To do this, we can restrict the arithmetic on size variables
to only three families of size indices: arbitrary sizes variables s for finite sizes, their successors ŝ, and ∞
[1, 2, 6]. With these families, the return type of constructors must have a successor size ŝ, while its recursive
arguments must have a type with base size s. For example, Cons from section 1.2 now has the type:

Cons: ∀s. ∀t. t → Lists → Listŝ

A significant disadvantage of allowing only a successor function on size variables and removing addition
is that it reduces the precision of the types of functions. For instance, append from section 1.2 now has the
type:

append: ∀s, r. ∀t. Lists t → Listr t → List∞ t

Nevertheless, append remains typeable and passes sized termination checking, as do shrink and ident,
which now have the following types:

shrink: ∀s. Nats → Nats

ident: ∀s. Nats → Nats

Reasoning about their termination follows similarly:

1. The argument n to shrink is assumed to have type Natŝ.

2. The component m must have type Nats.

3. By its function type and the type of its argument, the value from ident m must have type Nats.

3



Then the argument to the recursive call in shrink has a sized type smaller than the parameter of the
function. Notably, this procedure is done entirely without explicit size annotations – the sizes of the function
types are all inferred. Furthermore, solving the size constraints of successor sizes is also more efficient and
can be done in O(n2) time [1], where n is again the number of size variables.

1.3.1 Example: Quicksort

The benefit of sized types is not restricted to reducing the fragility of termination checking. Terminating
recursive functions which are not accepted using structural termination checking may instead be accepting
when using sized termination checking. Consider the following implementation of quicksort:

Fixpoint filter {X} (p: X -> bool) l :=

match l with

| nil => nil

| h :: t =>

if p h

then h :: filter p t

else filter p t

end.

Fixpoint quicksort l :=

match l with

| nil => nil

| h :: t =>

quicksort (filter (<=? h) t) ++

h :: quicksort (filter (>? h) t)

end.

By inspection, we can see that quicksort is terminating, but this definition is not accepted by Coq
because it expects the recursive call to take t or something structurally smaller than t; it cannot tell that
filter will return something structurally equal or smaller in size without being provided a proof. On the
other hand, these functions can be assigned successor sized types as follows:

filter: ∀s. ∀t. (t → Bool) → Lists t → Lists t

quicksort: ∀s. Lists Nat → List∞ Nat

Notice that filter terminates because if l has size ŝ, then t must have size s. Then quicksort also
terminates, since if l has size ŝ, then t must have size s, and by the type of filter, the argument to the
recursive call of quicksort also has size s. Again, these annotations are inferred by the termination checker,
so no additional code is required.

1.4 Objectives

The goal of this thesis is to reduce the fragility and the complexity of Coq’s termination checker by imple-
menting successor sized types in a non-trivial subset of Coq, replacing the existing syntactic termination
checking. We will follow the typing and sizing rules in [6] and implement size inference using the algorithms
presented its preceding works [1, 2]. This will reduce the task of termination-checking to type-checking
and solving size constraints without requiring any additional user annotations, and accept some additional
terminating recursive functions which may not currently be accepted by Coq.

1.5 Timeline

Task Month (2019)
Set up development environment and become familiar with codebase May
Add size fields to internal representation June
Implement size inference algorithm July
Modify termination checker to use sized types September
Final fixes and wrap-up November
Write-up mid-November

4



References

[1] Gilles Barthe, Benjamin Grégoire, and Fernando Pastawski. Practical inference for type-based termina-
tion in a polymorphic setting. In Pawe l Urzyczyn, editor, Typed Lambda Calculi and Applications, pages
71–85, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[2] Gilles Barthe, Benjamin Grégoire, and Fernando Pastawski. CIĈ : Type-based termination of recursive
definitions in the calculus of inductive constructions. In Miki Hermann and Andrei Voronkov, editors,
Logic for Programming, Artificial Intelligence, and Reasoning, pages 257–271, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[3] Eduardo Giménez. Codifying guarded definitions with recursive schemes. In Peter Dybjer, Bengt Nord-
ström, and Jan Smith, editors, Types for Proofs and Programs, pages 39–59, Berlin, Heidelberg, 1995.
Springer Berlin Heidelberg.

[4] John Hughes, Lars Pareto, and Amr Sabry. Proving the correctness of reactive systems using sized
types. In Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’96, pages 410–423, New York, NY, USA, 1996. ACM.

[5] W. Pugh. The Omega test: A fast and practical integer programming algorithm for dependence analysis.
In Supercomputing ’91:Proceedings of the 1991 ACM/IEEE Conference on Supercomputing, pages 4–13,
Nov 1991.

[6] Jorge Luis Sacchini. On type-based termination and dependent pattern matching in the calculus of induc-
tive constructions. Theses, École Nationale Supérieure des Mines de Paris, June 2011.

5


	Introduction
	Termination in Coq
	Termination-Checking using Sized Types
	Inferring Sizes with Successor Sized Types
	Example: Quicksort

	Objectives
	Timeline


