
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Practical Sized Typing for Coq
Anonymous Author(s)

Abstract
Termination of recursive functions and productivity of core-

cursive functions are important for maintaining logical con-

sistency in proof assistants. However, contemporary proof

assistants, such as Coq, rely on syntactic criteria that pre-

vent users from easily writing obviously terminating or pro-

ductive programs, such as quicksort. This is troublesome,

since there exist theories for type-based termination- and

productivity-checking.

In this paper, we present a design and implementation of

sized type checking and inference for Coq. We extend past

work on sized types for the Calculus of (Co)Inductive Con-

structions (CIC) with support for global definitions found

in Gallina, and extend the sized-type inference algorithm to

support completely unannotated Gallina terms. This allows

our design to maintain complete backwards compatibility

with existing Coq developments. We provide an implemen-

tation that extends the Coq kernel with optional support for

sized types.

1 Introduction
Proof assistants based on dependent type theory rely on

the termination of recursive functions and the productivity

of corecursive functions to ensure two important proper-

ties: logical consistency, so that it is not possible to prove

false propositions; and decidability of type checking, so that

checking that a program proves a given proposition is decid-

able.

In the proof assistant Coq, termination and productivity

are enforced by a guard predicate on fixpoints and cofixpoints
respectively. For fixpoints, recursive calls must be guarded by
destructors; that is, they must be performed on structurally

smaller arguments. For cofixpoints, corecursive calls must be

guarded by constructors; that is, they must be the structural

arguments of a constructor. The following examples illustrate

these structural conditions.

Fixpoint add n m : nat :=
match n with
| O => m
| S p => S (add p m)
end.

Variable A : Type.
CoFixpoint const a : Stream A := Cons a (const a).

In the recursive call to add, the first argument p is struc-
turally smaller than S p, which is the form of the original

first argument n. Similarly, in const, the constructor Cons
is applied to the corecursive call.

The actual implementation of the guard predicate ex-

tends beyond the guarded-by-destructors and guarded-by-

constructors conditions to accept a larger set of terminat-

ing and productive functions. In particular, function calls

will be unfolded (i.e. inlined) in the bodies of (co)fixpoints

as needed before checking the guard predicate. This has a

few disadvantages: firstly, the bodies of these functions are

required, which hinders modular design; and secondly, the

(co)fixpoint bodies may become very large after unfolding,

which can decrease the performance of type checking.

Furthermore, changes in the structural form of functions

used in (co)fixpoints can cause the guard predicate to reject

the program even if the functions still behave the same. The

following simple example, while artificial, illustrates this

structural fragility.

Fixpoint minus n m :=
match n, m with
| O, _ | _, O => n
| S n', S m' => minus n' m'
end.

Fixpoint div n m :=
match n with
| O => O
| S n' => S (div (minus n' m) m)
end.

If we replace | O, _ => n with | O, _ => O in minus,
it does not change its behaviour, but since it can return O
which is not a structurally-smaller term of n in the recursive

call to div, the guard predicate is no longer satisfied. Then

acceptance of div depends a function external to it, which

can lead to difficulty in debugging for larger programs. Fur-

thermore, the guard predicate is unaware of the obvious fact

that minus never returns a nat larger than its first argument,

which the user would have to write a proof for in order for

div to be accepted with our alternate definition of minus.
An alternative to guard predicates for termination and

productivity enforcement uses sized types. In essence, (co)-

inductive types are annotated with a size annotation, which

follow a simple size algebra: s B υ | ŝ | ∞. If some object

has size s , then the object wrapped in a constructor would

have a successor size ŝ . For instance, the nat constructors

follow the below rules:

Γ ⊢ O : Nat
ŝ

Γ ⊢ n : Nat
s

Γ ⊢ S n : Nat
ŝ

Termination- and productivity-checking is then simply a

type-checking rule that uses size information. For termina-

tion, the type of the function of the recursive call must have

a smaller size than that of the outer fixpoint; for productivity,

1

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

CPP ’20, 20 – 21 January 2020, New Orleans, LA, United States Anon.

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

the outer cofixpoint must have a larger size than that of the

function of the corecursive call. In short, they both follow

the following (simplified) typing rule.

Γ(f : tυ) ⊢ e : t υ̂

Γ ⊢ (co)fix f : t := e : ts

We can then assign minus the type natι → nat → natι ,
indicating that it preserves the size of its first argument.

Then div uses only the type of minus to successfully type

check, not requiring its body. Furthermore, being type-based

and not syntax-based, replacing | O, _ => n with | O,
_ => O does not affect the type of minus or the typeability
of div. Similarly, some other (co)fixpoints that preserve the

size of arguments in ways that aren’t syntactically obvious

may be typed to be sized-preserving, expanding the set of

terminating and productive functions that can be accepted.

However, past work on sized types in the Calculus of (Co)-

Inductive Constructions (CIC) [2, 4] have some practical

issues:

• They require nontrivial additions to the language, making

existing Coq code incompatible without adjustments that

must be made manually. These include annotations that

mark the positions of (co)recursive and size-preserved

types, and polarity annotations on (co)inductive defini-

tions that describe how subtyping works with respect to

their parameters.

• They require the (co)recursive arguments of (co)fixpoints

to have literal (co)inductive types. That is, the types cannot

be any other expressions that might otherwise reduce to

(co)inductive types.

• They do not specify how global definitions should be han-

dled. Ideally, size inference should be done locally, i.e.

confined to within a single global definition.

In this paper, we present CIC∗̂, an extension of CIĈ [2]

that resolves these issues without requiring any changes to

the surface syntax of Coq. We have also implemented a size

inference algorithm based on CIĈ∗ within Coq’s kernel
1
. In

Section 2, we define the syntax of the language, as well as

typing rules that handle both terms and global definitions.

We then present in Section 3 a size inference algorithm from

CIC terms to sized CIC∗̂ terms that details how we anno-

tate the types of (co)fixpoints, how we deal with the lack of

polarities, and how global definitions are typed, along with

the usual termination and productivity checking. Finally, we

review and compare with the past work done on sized typing

in CIC and related languages in Section 5. Additionally, we

provide some illustrating examples in Section 4.

2 CIC∗̂
In this section, we present CIC∗̂, a superset of CIC, the un-

derlying formal language of Coq, and adds to it sized types

1
Link removed for double-blinding; see anonymous supplementary

material.

· F · | · · sequences

S F V | P | Ŝ | ∞ stage annotations

U F Prop | Set | Typen set of universes

T [α]F (T [α])

| U universes

| X | X ⟨α ⟩ variables

| λX : T ◦.T [α] abstraction

| T [α]T [α] application

| ΠX : T [α].T [α] function types

| let X : T ◦ B T [α] in T [α] let-in (definitions)

| Iα (co)inductive types

| C (co)ind. constructors

| caseT ◦ T [α] of ⟨C ⇒ T [α]⟩ case analysis

| fix⟨n ⟩,m ⟨X : T ∗ B T [α]⟩ fixpoint

| cofixn ⟨X : T ∗ B T [α]⟩ cofixpoint

Figure 1. Syntax of CIĈ∗ terms with annotations α

in the style of CIĈ . Beginning with user-provided code in

CIC, we produce sized CIC∗̂ terms with sized types, check

for termination and productivity, and finish by erasing the

sizes to produce full CIĈ∗ terms.

CIC

inference

−−−−−−→ sized CIĈ∗
erasure

−−−−−→ full CIĈ∗

Before we delve into the details of what sized and full terms

are, or how inference and erasure are done, we first introduce

our notation.

2.1 Notation
Figure 1 presents the syntax of CIĈ∗, whose terms are para-

metrized over a set of annotations α , which indicate the kind

of annotations (if any) that appear on the term; details will be

provided shortly. We use X for term variable names,V for

stage variable names, P for position stage variable names,

I for (co)inductive type names, and C for (co)inductive con-

structor names. (The distinction betweenV and P will be

important when typing (co)fixpoints and global definitions).

We use the overline · to denote a sequence of some con-

struction: for instance, V is a sequence of stage variables

V . . .V .

In the syntax, the brackets ⟨·⟩ delimits a vector of comma-

separated constructions. In the grammar of Figure 1, the

construction inside the brackets denote the pattern of the el-

ements in the vector. For instance, the branches of a case anal-

ysis are ⟨C ⇒ T , . . . ,C ⇒ T ⟩. Finally, we use i, j,k, ℓ,m,n
to represent strictly positive integers.

2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Practical Sized Typing for Coq CPP ’20, 20 – 21 January 2020, New Orleans, LA, United States

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

T ◦ F T [{ϵ}] bare terms

T ∗ F T [{ϵ, ∗}] position terms

T∞ F T [{∞}] full terms

T ι F T [{∞, ι}] global terms

T F T [S] sized terms

Figure 2. Kinds of annotated terms

CIĈ∗ resembles the usual CIC, but there are some impor-

tant differences:

• Inductive types can carry annotations that represent

their size, e.g. Natυ . This is the defining feature of sized

types. They can also have position annotations, e.g. Nat∗,
which marks the type as that of the recursive argument

or return value of a (co)fixpoint. This is similar to struct
annotations in Coq that specify the structurally-recursive

argument.

• Variables may have a vector of annotations, e.g. x ⟨υ1,υ2 ⟩
.

If the variable is bound to a type containing (co)inductive

types, we can assign the annotations to each (co)inductive

type during reduction. For instance, if x were defined by

x : Set B List Nat, then the example would reduce to

Listυ1 Natυ2 . This is important in the typing algorithm in

Section 3.

• Definitions are explicitly part of the syntax, in constrast

to CIĈ and CIĈ [4]. This reflects the actual structure in

Coq’s kernel.

• Wealso treatmutual (co)fixpoints explicitly. In fixpoints,
⟨nk ⟩ is a vector of indices indicating the positions of the
recursive arguments in each fixpoint type, andm picks out

themth (co)fixpoint in the vector of mutual definitions.

We also refer to definitions [3] as let-ins to avoid confusion
with local and global definitions in environments.

Figure 2 lists shorthand for the kinds of annotated terms

that we will use. Bare terms as used in the grammar are

necessary for subject reduction [4]. Position terms have as-

terisks to mark the types in (co)fixpoint types with at most

(for fixpoints) or at least (for cofixpoints) the same size as

that of the (co)recursive argument. Global terms appear in

the types of global definitions, with ι marking types with

preserved sizes. Sized terms are used for termination- and

productivity-checking, and full terms appear in the types

and terms of global declarations.

In terms of type checking and size inference, we proceed

as follows:

T ◦ inference

−−−−−−→ T ,T ∗ erasure

−−−−−→ T∞,T ι

Figure 3 illustrates the difference between local and global
declarations and environments, a distinction also in the Coq

kernel. Local assumptions and definitions occur in abstrac-

tions and let-ins, respectively, while global ones are entire

D[α]F local declarations

| X : T [α] local assumption

| X : T [α] B T [α] local definition
DG F global declarations

| Assum X : T∞. global assumption

| Def X : T ι B T∞. global definition

Γ F □ | Γ(D) local environments

ΓG F □ | ΓG (DG) global environment

∆[α]F □ | ∆[α](X : T [α]) assumption environments

Figure 3. Declarations and environments

e,a,p, ℘ ∈ T [α] (expressions) υ, ρ ∈ V ∪ P 4 ∈ U

t ,u,v ∈ T [α] (types) V ∈ P(V) I ∈ I

f ,д,h,x ,y, z ∈ X s ∈ S c ∈ C

Figure 4. Metavariables

programs. Notice that global declarations have no sized

terms: by discarding size information, we can infer sizes

locally rather than globally. Local declarations and assump-

tion environments are parametrized over a set of annotations

α ; we use the same shorthand for environments as for terms.

Figure 4 lists the metavariables we use in this work, which

may be indexed byn,m, i, j,k, ℓ, or integer literals. If an index
appears under an overline, the sequence it represents spans

the range of the index, usually given implicitly; for instance,

given i inductive types, I skk = I s1
1
. . . I sii . Notice that this is

not the same as an index outside of the underline, such as

in ak , which represents the kth sequence of terms a. Indices
also appear in syntactic vectors; for example, given a case

analysis with j branches, we write ⟨cℓ ⇒ eℓ⟩ for the vector
⟨c1 ⇒ e1, . . . , c j ⇒ ej ⟩.
Finally, we use t[x B e] to denote the term t with free vari-

able x substituted by expression e , and t[υ B s] to denote the
term t with stage variableυ substituted by stage annotation s .

Occasionally we use t[∞i B si] to denote the substitutions

of all full annotations in t by the stage annotations in si in
an arbitrary order.

2.1.1 Mutual (Co)Inductive Definitions
The definition of mutual (co)inductive types and their con-

structors are stored in a global signature Σ. (Typing judge-
ments are parametrized by all three of Σ, ΓG , Γ.) A mutual

(co)inductive definition contains:

• ∆p , the parameters of the (co)inductive types;

• Ii , their names;

• ∆ai , the indices (or arguments) of these (co)inductive types;

3

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

CPP ’20, 20 – 21 January 2020, New Orleans, LA, United States Anon.

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

IndF ∆ ⊢ ⟨I X : Π∆∞.U ⟩ B ⟨C : Π∆∞.I X T∞⟩

Σ F □ | Σ(Ind)

∆p ⊢ ⟨Ii dom(∆p) : Π∆ai .4i ⟩ B ⟨c j : Π∆j .Ikj dom(∆p) t j ⟩

Figure 5. Inductive definitions and signature

• 4i , their universes;

• c j , the names of their constructors;

• ∆j , the arguments of these constructors;

• Ikj , the (co)inductive types of the fully-applied construc-

tors; and

• t j , the indices of those (co)inductive types.

As an example, the usual Vector type would be defined

in the language as:

(A : Type) ⊢ Vector A : Nat → Type B

⟨VNil : Vector A O,

VCons : (n : Nat) → A → Vector A n → Vector A (S n)⟩.

As with mutual (co)fixpoints, we treat mutual (co)inductive

definitions explicitly. Furthermore, in contrast to CIĈ and

CIĈ , our definitions do not have a vector of polarities. In

those works, each parameter has an associated polarity that

tells us whether the parameter is covariant, contravariant,

or invariant with respect to the (co)inductive type during

subtyping. Since Coq’s (co)inductive definitions do not have

polarities, we forgo them so that our type checker can work

with existing Coq code without modification. Consequently,

we will see that the parameters of (co)inductive types are

always bivariant in the subtyping Rule (st-app).

The well-formedness of (co)inductive definitions depends

on certain syntactic conditions such as strict positivity. Since

we assume definitions in Coq to be valid here, we do not

list these conditions, and instead refer the reader to clauses

I1–I9 in [4], clauses 1–7 in [2], and [8].

2.1.2 Metafunctions
We declare the following metafunctions:

• SV : T → P(V ∪ P) returns the set of stage variables in

the given sized term;

• PV : T → P(P) returns the set of position stage variables

in the given sized term;

• ⌊.⌋ : S \ {∞} → V ∪ P returns the stage variable in the

given finite stage annotation;

• ∥·∥ : ∗ → N0
returns the cardinality of the given argument

(e.g. vector length, set size, etc.);

• J.K : T → N0
counts the number of stage annotations in

the given term;

• | · | : T → T ◦
erases sized terms to bare terms;

• | · |∞ : T → T∞
erases sized terms to full terms;

• | · |∗ : T → T ∗
erases stage annotations with variables in

P to ∗ and all others to bare; and

WF(Σ, ΓG , Γ) (x : t B e) ∈ Γ
(δ -local)

Σ, ΓG , Γ ⊢ x ⟨si ⟩ ▷δ |e |∞[∞i B si]

WF(Σ, ΓG , Γ) (Def x : t B e .) ∈ ΓG
(∆-global)

Σ, ΓG , Γ ⊢ x ⟨si ⟩ ▷∆ e[∞i B si]

Figure 6. Reduction rules for local and global definitions

(ss-infty)
s ⊑ ∞

(ss-refl)
s ⊑ s

(ss-succ)

s ⊑ ŝ

s1 ⊑ s2 s2 ⊑ s3
(ss-trans)

s1 ⊑ s3

Figure 7. Substaging rules

• | · |ι : T → T ι
erases stage annotations with variables in

P to ι and all others to ∞.

They are defined in the obvious way. Functions on T are

inductive on the structure of terms, and they do not touch

recursive bare and position terms.

We use the following additional expressions to denote

membership in contexts and signatures:

• x ∈ Γ means there is some assumption or definition with

variable name x in the local context, and similarly for ΓG ;
• I ∈ Σ means the (co)inductive definition of type I is in the

signature.

2.2 Reduction Rules
The reduction rules are the usual ones for β-reduction (func-

tion application), ζ -reduction (let-in evaluation), ι-reduction
(case expressions), µ-reduction (fixpoint expressions), ν-re-
duction (cofixpoint expressions), δ -reduction (local defini-

tions), ∆-reduction (global definitions), and η-equivalence.
We define convertibility (≈) as the reflexive–symmetric–

transitive closure of reductions up to η-equivalence. We refer

the reader to [2, 4, 5, 8] for precise details and definitions.

In the case of δ -/∆-reduction, if the variable has annota-
tions, we define additional rules, as shown in Figure 6. These

reduction rules are particularly important for the size infer-

ence algorithm. If the definition body contains (co)inductive

types (or other defined variables), we can assign them fresh

annotations for each distinct usage of the defined variable.

This allows for correct substaging relations derived from

subtyping relations. Further details are discussed in later

sections.

We also use the metafunction whnf to denote the reduc-

tion of a term to weak head normal form, which would have

the form of a universe, a function type, an unapplied ab-

straction, an (un)applied (co)inductive type, an (un)applied

constructor, or an unapplied (co)fixpoint, with inner terms

unreduced.

4

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Practical Sized Typing for Coq CPP ’20, 20 – 21 January 2020, New Orleans, LA, United States

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

Prop ≤ Set ≤ Type1

(st-cumul)

Typei ≤ Typei+1

t ≈ u
(st-conv)

t ≤ u
t ≤ u u ≤ v

(st-trans)
t ≤ v

t2 ≈ t1 u1 ≤ u2
(st-prod)

Πx : t1.u1 ≤ Πy : t2.u2

t1 ≤ t2 u1 ≈ u2
(st-app)

t1u1 ≤ t2u2

I inductive s1 ⊑ s2
(st-ind)

I s1 ≤ I s2

I coinductive s2 ⊑ s1
(st-coind)

I s1 ≤ I s2

Figure 8. Subtyping rules

2.3 Subtyping Rules
First, we define the substaging relation for our stage annota-

tions in Figure 7. Additionally, we define ∞̂ to be equivalent

to ∞.

We define the subtyping rules for sized types in Figure 8.

There are some key features to note:

• Universes are cumulative. (st-cumul)

• Since convertibility is symmetric, if t ≈ u, then we have

both t ≤ u and u ≤ t . (st-conv)
• Inductive types are covariant in their stage annotations;

coinductive types are contravariant. (st-ind) (st-coind)
• By the type application rule, the parameters of polymor-

phic types are bivariant. (st-app)

We can intuitively understand the covariance of inductive

types by considering stage annotations as a measure of how

many constructors "deep" an object can at most be. If a list

has type Listst , then a list with one more element can be

said to have type Listŝt . Furthermore, by the substaging

and subtyping rules, Listst ≤ Listŝt : if a list has at most s
"many" elements, then it certainly also has at most ŝ "many"

elements.

Conversely, for coinductive types, we can consider stage

annotations as ameasure of howmany constructors an object

must at least "produce". A coinductive stream Streamŝ that
produces at least ŝ "many" elements can also produce at least

s "many" elements, so we have the contravariant relation

Streamŝ ≤ Streams , in accordance with the rules.

As previously mentioned, inductive definitions do not

have polarities, so there is no way to indicate whether pa-

rameters are are covariant, contravariant, or invariant. As a

compromise, we treat all parameters as invariant, which we

instead call bivariant. This is because, algorithmically speak-

ing, the subtyping relation would produce both substaging

constraints (and not neither, as invariant suggests). For in-
stance, Lists1 Nats3 ≤ Lists2 Nats4 yields Nats3 ≈ Nats4 ,

(wf-nil)

WF(□,□,□)

Σ, ΓG , Γ ⊢ t : 4 x < Γ
(wf-local-assum)

WF(Σ, ΓG , Γ(x : t))

Σ, ΓG , Γ ⊢ e : t x < Γ
(wf-local-def)

WF(Σ, ΓG , Γ(x : t B e))

Σ, ΓG , Γ ⊢ t : 4 x < ΓG
(wf-global-assum)

WF(Σ, ΓG (Assum x : |t |∞.),□)

Σ, ΓG , Γ ⊢ e : t x < ΓG
(wf-global-def)

WF(Σ, ΓG (Def x : |t |ι B |e |∞.),□)

Figure 9. Well-formedness of environments

indType(Σ, Ik) = Π∆p .Π∆ak .4k

constrType(Σ, cℓ, si) =

Π∆p .Π∆ℓ[I
∞
i B I sii].I

ŝkℓ
kℓ

dom(∆p) t ℓ

motiveType(Σ,p,4, I sk) =

Π∆ak [dom(∆p) B p].Π_ : I sk p dom(∆ak).4

branchType(Σ,p, cℓ, si , ℘) =

Π∆ℓ[I
∞
i B I sii][dom(∆p) B p].℘ t ℓ (cℓ p dom(∆ℓ))

where k ∈ ı, ℓ ∈ ȷ,(
∆p ⊢ ⟨Ii _ : Π∆ai .4i ⟩ B ⟨c j : Π∆j .Ikj _ t j

〉
) ∈ Σ

Figure 10. Metafunctions for typing rules

υ < SV(t)
υ pos t

υ < SV(t)
υ neg t

υ neg t υ pos u

υ pos Πx : t .u

υ pos t υ neg u

υ neg Πx : t .u

υ < SV(a) I inductive

υ pos I sa

υ < SV(a) I coinductive

υ neg I sa

υ < SV(a) I inductive υ , ⌊s⌋

υ neg I sa

υ < SV(a) I coinductive υ , ⌊s⌋

υ pos I sa

Figure 11. Positivity/negativity of stage variables in terms

which yields both s3 ⊑ s4 and s4 ⊑ s3. A formal description

of the subtyping algorithm is presented in Section 3.

5

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

CPP ’20, 20 – 21 January 2020, New Orleans, LA, United States Anon.

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

WF(Σ, ΓG , Γ) (x : t B e) ∈ Γ ∥si ∥ = JeK
(var-def)

Σ, ΓG , Γ ⊢ x ⟨si ⟩
: t

WF(Σ, ΓG , Γ) (Def x : t B e .) ∈ ΓG ∥si ∥ = JeK
(const-def)

Σ, ΓG , Γ ⊢ x ⟨si ⟩
: t[ι B s]

Σ, ΓG , Γ(x : t) ⊢ e : u
(abs)

Σ, ΓG , Γ ⊢ λx : |t |.e : Πx : t .u

Σ, ΓG , Γ ⊢ e1 : t Σ, ΓG , Γ(x : t B e1) ⊢ e2 : u
(let-in)

Σ, ΓG , Γ ⊢ let x : |t | B e1 in e2 : u[x B e1]

WF(Σ, ΓG , Γ)
(ind)

Σ, ΓG , Γ ⊢ I sk : indType(Σ, Ik)

WF(Σ, ΓG , Γ)
(constr)

Σ, ΓG , Γ ⊢ cℓ : constrType(Σ, cℓ, si)

Σ, ΓG , Γ ⊢ e : I ŝkk p a indType(Σ, Ik) = Π_.4k (4k ,4, Ik) ∈ Elims

Σ, ΓG , Γ ⊢ ℘ : motiveType(Σ,p,4, I ŝkk) Σ, ΓG , Γ ⊢ ej : branchType(Σ,p, c j , si , ℘)
(case)

Σ, ΓG , Γ ⊢ case |℘ | e of ⟨c j ⇒ ej ⟩ : ℘ae

tk ≈ Π∆k1 .Πxk : Iυkk ak .Π∆k2 .uk ∥∆k ∥ = nm − 1

υk pos ∆k1 ,∆k2 ,uk υk < SV(Γ,∆k ,ak , ek) υk , ⌊s⌋ ∈ P

Σ, ΓG , Γ ⊢ tk : 4k Σ, ΓG , Γ(fk : tk) ⊢ ek : tk [υk B υ̂k]
(fix)

Σ, ΓG , Γ ⊢ fix⟨nk ⟩,m ⟨fk : |tk |
∗ B ek ⟩ : tm[υm B s]

tk ≈ Π∆k .I
υk
k ak

υk neg ∆k υk < SV(Γ,ak , ek) υk , ⌊s⌋ ∈ P

Σ, ΓG , Γ ⊢ tk : 4k Σ, ΓG , Γ(fk : tk) ⊢ ek : tk [υk B υ̂k]
(cofix)

Σ, ΓG , Γ ⊢ cofixm ⟨fk : |tk |
∗ B ek ⟩ : tm[υm B s]

Figure 12. Typing rules (excerpt)

2.4 Typing Rules
We now present the typing rules of CIC∗̂. Note that these

are type-checking rules for sized terms, whose annotations

will come from size inference in Section 3.

We begin with the rules for well-formedness of local and

global environments, presented in Figure 9. As mentioned

earlier, we do not cover the well-formedness of signatures.

Because well-typed terms are sized, we erase annotations

when putting declarations in the global environment in Rules

(wf-global-assum) and (wf-global-def) as an explicit indica-

tor that we only use stage variables within individual global

declarations. The declared type of global definitions are anno-

tated with global annotations in Rule (wf-global-def); these

annotations are used by the typing rules.

The typing rules for sized terms are given in Figure 12.

In the style of a Pure Type System, we define the three sets

Axioms, Rules, and Elims, which describe how universes

are typed, how products are typed, and what eliminations

are allowed in case analyses, respectively. These are the

same as in CIC and are listed in Figure 17 in Appendix A

for reference. Metafunctions that construct some important

function types are listed in Figure 10; they are also used by

the inference algorithm in Section 3. Finally, the typing rules

use the notions of positivity and negativity, whose rules are

given in Figure 11, describing where the position annotations

of fixpoints are allowed to appear. We go over the typing

rules in detail shortly.

Before we proceed, there are some indexing conventions

to note. In Rules (ind), (constr), and (case), we use i to range

over the number of (co)inductive types in a single mutual

(co)inductive definition, j to range over the number of con-

structors of a given (co)inductive type, k for a specific index

in the range ı, and ℓ for a specific index in the range ȷ. In
Rules (fix) and (cofix), we use k to range over the number

of mutually-defined (co)fixpoints andm for a specific index

in the range k . When a judgement contains an unbound

ranging index, i.e. not contained within ⟨·⟩, it means that the

judgement or side condition should hold for all indices in
its range. For instance, the branch judgement in Rule (case)

should hold for all branches, and fixpoint type judgement in

Rule (fix) for all mutually-defined fixpoints. Finally, we use

_ to omit irrelevant constructions for readability.

The typing rule for assumptions, universes, products, ap-

plications, and convertibility are unchanged from CIC and

are provided for reference in Figure 15 in Appendix A. Rules

(abs) and (let-in) differ from CIC only in that type annota-

tions are erased to bare. This is to preserve subject reduction

without requiring size substitution during reduction, and is

discussed further in [4].

The first significant usage of stage annotations are in Rules

(var-def) and (const-def). If a variable or a constant is bound

to a body in the local or global environment, it is annotated

with a vector of stages with the same length as the number

of stage annotations in the body, allowing for proper δ -/∆-
reduction of variables and constants. Note that each usage

of a variable or a constant does not have to have the same

stage annotations.

6

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

Practical Sized Typing for Coq CPP ’20, 20 – 21 January 2020, New Orleans, LA, United States

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

The type of a (co)inductive type is a function type from

its parameters ∆p and its indices ∆ak to its universe 4k . The

(co)inductive type itself holds a single stage annotation.

The type of a constructor is a function type from its pa-

rameters ∆p and its arguments ∆ℓ to its (co)inductive type

Ik applied to the parameters and its indices t ℓ . Stage annota-
tions appear in two places:

• In the argument types of the constructor. For each (co)-

inductive type Ii , we annotate their occurrences in ∆ℓ

with its own stage annotation si .
• On the (co)inductive type of the fully-applied constructor.

If the constructor belongs to the inductive type Ik , then it is
annotated with the successor of the kth stage annotation,

ŝk . Using the successor guarantees that the constructor

always constructs an object that is larger than any of its

arguments of the same type.

As an example, consider a possible typing of VCons:

VCons : (A : Type) → (n : Nat
∞) → A → Vector

s A n

→ Vector
ŝ A (S n).

It has a single parameter A and S n corresponds to the index

t j of the constructor’s inductive type. The input Vector has

size s , while the output Vector has size ŝ .
A case analysis has three important parts:

• The target e . It must have a (co)inductive type Ik and

a successor stage annotation ŝk so that any constructor

arguments can have the predecessor stage annotation.

• The motive ℘. It is an abstraction over the indices ∆a
of the target type and the target itself, and produces the

return type of the case analysis.

This presentation of the return type differs from those of

[4–6], where the case analysis contains a return type in

which the index and target variables are free and explicitly

stated, in the syntactic form y.x .℘.
• The branches ej . Each branch is associated with a con-

structor c j and is an abstraction over the arguments ∆j of

the constructor.

Note that, like in the type of constructors, for each (co)-

inductive type Ii , we annotate their occurrences in ∆j with

its own stage annotation si , with the kth stage annotation

being the predecessor of the target’s stage annotation, sk .

The type of the entire case analysis is then the motive ap-

plied to the target type’s indices and the target itself. Notice

that we also restrict the universe of this type based on the

universe of the target type using Elims.

Finally, we have the types of fixpoints and cofixpoints,

whose typing rules are very similar. We take the annotated

type tk of the kth (co)fixpoint definition to be convertible to

a function type containing a (co)inductive type. For fixpoints,

the type of the nk th argument, the recursive argument, is

an inductive type annotated with a stage variable vk . For
cofixpoints, the return type is a coinductive type annotated

with vk . The positivity or negativity of vk in the rest of tk

indicate where vk may occur other than in the (co)recursive

position. For instance,

List
υ
Nat → List

υ
Nat → List

υ
Nat

is a valid fixpoint type with respect to υ, while

Stream
υ
Nat → List

υ
Nat → List Nat

υ

is not, since υ appears negatively in Stream and must not

appear at all in the parameter of the List return type.

In general, υk indicates the types that are size-preserved.

For fixpoints, it indicates not only the recursive argument

but also which argument or return types have size at most
that of the recursive argument. For cofixpoints, it indicates

the arguments that have size at least that of the return type.

Therefore, it cannot appear on types of the incorrect recur-

sivity, or on types that are not being (co)recurred upon.

If tk are well typed, then the (co)fixpoint bodies should

have type tk with a successor size in the local context where

(co)fixpoint names fk are bound to their types tk . Intuitively,
this tells us that the recursive call to fk in fixpoint bodies

are on smaller-sized arguments, and that corecursive bodies

produce objects larger than those from the corecursive call

to fk . The type of the whole (co)fixpoint is then themth type

tm with its stage variable vm bound to some annotation s .
Additionally, all (co)fixpoint types are annotated with po-

sition annotations: |tk |
υk

replaces all occurrences of vk with

∗. We cannot keep the stage annotations for the same reason

as in Rule (abs), but we use ∗ to remember which types are

size-preserving.

In actual Coq code, the indices of the recursive elements

are rarely given, and there are no user-provided position an-

notations at all. In Section 3, we present howwe compute the

indices and the position annotations during size inference.

3 Size Inference
The goal of the size inference algorithm is to take unan-

notated programs in T ◦
(corresponding to terms in CIC),

simultaneously assign annotations to them while collecting

a set of substaging constraints based on the typing rules,

check the constraints to ensure termination and productiv-

ity, and produce annotated programs in T ι
that are stored in

the global environment and can be used in the inference of

future programs. Constraints are generated when two sized

types are deemed to satisfy the subtyping relation t ≤ u,
from which we deduce the subtyping relations that must

hold for their annotations from the subtyping rules. There-

fore, this algorithm is also a type-checking algorithm, since it

could be that t fails to subtypeu, in which case the algorithm

fails.

3.1 Notation
We use three kinds of judgements to represent checking,
inference, and well-formedness. For convenience, they all use

the symbol⇝, with inputs on the left and outputs on the

7

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

CPP ’20, 20 – 21 January 2020, New Orleans, LA, United States Anon.

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

right. We useC : P(S×S) to represent substaging constraints:
if (s1, s2) ∈ C , then we must enforce s1 ⊑ s2.

• C, ΓG , Γ ⊢ e◦ ⇐ t ⇝ C ′, e takes a set of constraints C ,
environments ΓG , Γ, a bare term e◦, and an annotated type

t , and produces the annotated term e with a new set of

constraints that ensures that the type of e subtypes t .
• C, ΓG , Γ ⊢ e◦ ⇝ C ′, e ⇒ t takes a set of constraints C ,
environments ΓG , Γ, and a bare term e◦, and produces the

annotated term e , its annotated type t , and a new set of

constraints C ′
.

• Γ◦ ⊢ Γ takes a global environment with bare declarations

and produces global environment where each declaration

has been properly annotated via inference.

The algorithm is implicitly parametrized over a set of

stage variables V , a set of position stage variables P, and a

signature Σ. The setsV,P are treated as mutable for brevity,

their assignment denoted with B, and initialized as empty.

The variable assignment V = V is a copy-by-value and not

a reference. We will have P ⊆ V throughout. Finally, we

use e ⇒∗ t to mean e ⇒ t ′ ∧ t = whnf(t ′).
We define a number of metafunctions to translate the side

conditions from the typing rules into procedural form, which

are introduced as needed.

3.2 Inference Algorithm
Size inference begins with a bare term. In this case, even

type annotations of (co)fixpoints are bare; that is,

T ◦ F · · · | fix⟨nk ⟩,m ⟨X : T ◦ B T ◦⟩ | cofixn ⟨X : T ◦ B T ◦⟩

Notice that fixpoints still have their vector of recursive ar-

gument indices, whereas real Coq code can have no indices

given. To produce these indices, we do what Coq’s kernel

currently does: attempt type checking on every combination

of indices from left to right until one combination works, or

fail if none do.

Figure 13 presents the size inference algorithm, which

uses the same indexing conventions as the typing rules. We

will go over parts of the algorithm in detail shortly.

Rule (a-check) is the checking component of the algorithm.

To ensure that the inferred type subtypes the sized given

type, it uses the metafunction ⪯ that takes two sized terms

and attempts to produce a set of stage constraints based on

the subtyping rules of Figure 8. It performs reductions as

necessary and fails if two terms are incompatible.

Rules (a-var-assum), (a-const-assum), (a-univ), (a-prod),

(a-abs), (a-app), and (a-let-in) are all fairly straightforward.

Again, we erase type annotations to bare. They use the meta-

functions axiom, rule, and elim, which are functional coun-

terparts to the sets Axioms, Rules, and Elims in Figure 17.

In Rules (a-var-def) and (a-const-def), we annotate vari-

ables and constants using fresh, which generates the given

number of fresh stage annotations, adds them to V , and re-

turns them as a vector. Its length corresponds to the number

of stage annotations found in the body of the definitions. For

instance, if (x : Type B List
s1
Nat

s2) ∈ Γ, then a use of x
would be annotated as x ⟨υ1,υ2 ⟩

. If x is δ -reduced inference,

such as in a fixpoint type, then it is replaced by List
υ1
Nat

υ2
.

Furthermore, since the types of global definitions can have

global annotations marking sized-preserved types, we re-

place the global annotations with a fresh stage variable.

A position-annotated type (i.e. an annotated (co)recursive

type) from a (co)fixpoint can be passed into the algorithm,

so we deal with the possibilities separately in Rules (a-ind)

and (a-ind-star). In the former, a bare (co)inductive type is

annotated with a stage variable; in the latter, a (co)inductive

type with a position annotation has its annotation replaced

by a position stage variable. The metafunction fresh* does

the same thing as fresh except that it also adds the freshly-

generated stage variables to P.

In Rule (a-constr), we generate a fresh stage variable for

each (co)inductive type in the mutual definition that defines

the given constructor. The number of types is given by inds.

These are used to annotate the types of its (co)inductive

arguments, as well as the return type, which of course has a

successor stage annotation.

The key constraint generated by Rule (a-case) is υ̂k ⊑ s ,
where s is the annotation on the target type Ik . Similar to Rule

(a-constr), we generate fresh stage variables υi for each (co)-

inductive type in the mutual definition that defines the type

of the target. They are assigned to the branches’ arguments

of types Ii , which correspond to the constructor arguments of

the target. Then this constraint ensures that the constructor

argument types have a smaller size than that of the target,

since by Rules (ss-succ) and (ss-trans) we have υk ⊑ s .
The rest of the rule proceeds as we would expect: we get

the type of the target and the motive, we check that the

motive and the branches have the types we expect given

the target type, and we give the type of the case analysis

as the motive applied to the target type’s indices and the

target itself. We also ensure that the elimination universes

are valid using elim on the motive type’s return universe

and the target type’s universe. To obtain the motive type’s

return universe, we decompose the motive’s type using de-

compose, which splits a function type into the given number

of arguments and a return type, which in this case is the

return universe.

Finally, we come to size inference and termination- and

productivity-checking for (co)fixpoints. It uses the following

metafunctions:

• setRecStars, given a function type t and an index n, de-
composes t into arguments and return type, reduces the

nth argument type to an inductive type, annotates that

inductive type with position annotation ∗, annotates all

other argument and return types with the same induc-

tive type with ∗, and rebuilds the function type. This is

8

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

Practical Sized Typing for Coq CPP ’20, 20 – 21 January 2020, New Orleans, LA, United States

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

(a-var-assum)

C, ΓG , Γ ⊢ x ⇝ C,x ⇒ Γ(x)
e : t = Γ(x) υi = fresh(JeK)

(a-var-def)

C, ΓG , Γ ⊢ x ⇝ C,x ⟨υi ⟩ ⇒ t

(a-const-assum)

C, ΓG , Γ ⊢ x ⇝ C,x ⇒ ΓG (x)
e : t = ΓG (x) υi = fresh(JeK) υ = fresh(1)

(a-const-def)

C, ΓG , Γ ⊢ x ⇝ C,x ⟨υi ⟩ ⇒ t[ι B υ]

(a-univ)

C, ΓG , Γ ⊢ 4⇝ C,4 ⇒ axiom(4)
C, ΓG , Γ ⊢ e◦ ⇝ C1, e ⇒ t

(a-check)

C, ΓG , Γ ⊢ e◦ ⇐ u ⇝ C1 ∪ t ⪯ u, e

C, ΓG , Γ ⊢ t◦ ⇝ C1, t ⇒
∗ 41 C1, ΓG , Γ(x : t) ⊢ u◦ ⇝ C2,u ⇒∗ 42

(a-prod)

C, ΓG , Γ ⊢ Πx : t◦.u◦ ⇝ C2,Πx : t .u ⇒ rule(41,42)

C, ΓG , Γ ⊢ t◦ ⇝ C1, t ⇒
∗ 4 C1, ΓG , Γ(x : t) ⊢ e◦ ⇝ C2, e ⇒ u

(a-abs)

C, ΓG , Γ ⊢ λx : t◦ B e◦ ⇝ C2, λx : |t | B e ⇒ Πx : t .u

C, ΓG , Γ ⊢ e◦
1
⇝ C1, e1 ⇒

∗ Πx : t .u C1, ΓG , Γ ⊢ e◦
2
⇐ t ⇝ C2, e2

(a-app)

C, ΓG , Γ ⊢ e◦
1
e◦
2
⇝ C2, e1e2 ⇒ u[x B e2]

C, ΓG , Γ ⊢ t◦ ⇝ C1, t ⇒
∗ 4 C1, ΓG , Γ ⊢ e◦

1
⇐ t ⇝ C2, e1 C2, ΓG , Γ(x : t B e1) ⊢ e

◦
2
⇝ C3, e2 ⇒ u

(a-let-in)

C, ΓG , Γ ⊢ let x : t◦ B e◦
1
in e◦

2
⇝ C3, let x : |t | B e1 in e2 ⇒ u[x B e1]

υ = fresh(1)
(a-ind)

C, ΓG , Γ ⊢ Ik ⇝ C, Iυk ⇒ indType(Σ, Ik)

ρ = fresh*(1)
(a-ind-star)

C, ΓG , Γ ⊢ I∗k ⇝ C, I
ρ
k ⇒ indType(Σ, Ik)

υ = fresh(inds(cℓ))
(a-constr)

C, ΓG , Γ ⊢ cℓ ⇝ C, cℓ ⇒ constrType(Σ, cℓ ,υ)

C, ΓG , Γ ⊢ e◦ ⇝ C1, e ⇒
∗ I sk p a C1, ΓG , Γ ⊢ ℘◦ ⇝ C2, ℘⇒ tp

Π_ : 4k = indType(Σ, Ik) (_,4) = decompose(tp , ∥∆ak ∥ + 1) elim(4k ,4, Ik) υi = fresh(inds(Ik))

C3 = C2 ∪ {υ̂k ⊑ s} ∪ (tp ⪯ motiveType(Σ,p,4, I sk)) C3, ΓG , Γ ⊢ e◦j ⇐ branchType(Σ,p, c j ,υi , ℘)⇝ C4j , ej
(a-case)

C, ΓG , Γ ⊢ case℘◦ e◦ of ⟨c j ⇒ e◦j ⟩⇝
⋃
j
C4j , case |℘ | e of ⟨c j ⇒ ej ⟩ ⇒ ℘ae

C, ΓG , Γ ⊢ t◦k ⇝ _, _ ⇒ _ Vouter = V

C, ΓG , Γ ⊢ setRecStars(t◦k ,nk)⇝ C
1k , tk ⇒∗ 4⋃

k C1k , ΓG , Γ(fk : tk) ⊢ e
◦
k ⇐ shift(tk)⇝ C

2k , ek

C4 = RecCheckLoop(
⋃
k C2k ,Vouter, getRecVar(tk ,nk), tk , ek)

(a-fix)

C, ΓG , Γ ⊢ fix⟨nk ⟩,m ⟨fk : t◦k B ek ⟩⇝ C4,fix⟨nk ⟩,m ⟨fk : |tk |
∗ B ek ⟩ ⇒ tm

C, ΓG , Γ ⊢ t◦k ⇝ _, _ ⇒ _ Vouter = V

C, ΓG , Γ ⊢ setCorecStars(t◦k)⇝ C
1k , tk ⇒∗ 4⋃

k C1k , ΓG , Γ(fk : tk) ⊢ e
◦
k ⇐ shift(tk)⇝ C

2k , ek

C4 = RecCheckLoop(
⋃
k C2k ,Vouter, getCorecVar(tk), tk , ek)

(a-cofix)

C, ΓG , Γ ⊢ cofixm ⟨fk : t◦k B ek ⟩⇝ C4, cofixm ⟨fk : |tk |
∗ B ek ⟩ ⇒ tm

(a-global-empty)
□ ⇝ □

Γ◦G ⇝ ΓG ∅, ΓG ,□ ⊢ t◦ ⇝ _, t ⇒ 4
(a-global-assum)

Γ◦G (Assum x : t◦.)⇝ ΓG (Assum x : |t |∞.)

Γ◦G ⇝ ΓG ∅, ΓG ,□ ⊢ t◦ ⇝ C1, t ⇒ 4

C1, ΓG ,□ ⊢ e◦ ⇝ _, e ⇒ u _ = u ⪯ t P B P ∪ getPosVars(t ,u)
(a-global-def)

Γ◦G (Def x : t◦ B e◦.)⇝ ΓG (Def x : |t |ι B |e |∞.)

Figure 13. Size inference algorithm

9

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

CPP ’20, 20 – 21 January 2020, New Orleans, LA, United States Anon.

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

let rec RecCheckLoop C2 Vouter ρk tk ek =
try let pvk = PV tk in

let svk = (Vouter ∪ SV tk ∪ SV ek) \ pvk in
let C3k = RecCheck C2 ρk pvk svk
in

⋃
k
C3k

with RecCheckFail V ->
P := P \V ;
RecCheckLoop C2 ρk tk ek

Figure 14. Pseudocode implementation of RecCheckLoop

how fixpoint types obtain their position annotations with-

out being user-provided; the algorithm will remove other

position annotations if size-preservation fails. Similarly,

setCorecStars annotates the coinductive return type

first, then the argument types with the same coinductive

type. Both of these can fail if the nth argument type or

the return type respectively are not (co)inductive types.

Note that the decomposition of t may perform reductions

using whnf.

• getRecVar, given a function type t and an index n, re-
turns the position stage variable of the annotation on

the nth inductive argument type, while getCorecVar

returns the position stage variable of the annotation on

the coinductive return type. Essentially, they retrieve the

position stage variable of the annotation on the primary

(co)recursive type of a (co)fixpoint type, which is used to

check termination and productivity.

• shift replaces all stage annotations s with a position stage
variable (i.e. ⌊s⌋ ∈ P) by its successor ŝ .

Although the desired (co)fixpoint is the mth one in the

block of mutually-defined (co)fixpoints, we must still size-

infer and type-check the entire mutual definition. Rules (a-

fix) and (a-cofix) first run the size inference algorithm on each

of the (co)fixpoint types, ignoring the results, to ensure that

any reduction we perform on it will terminate (otherwise

the algorithm would have failed). Then we annotate the bare

types with position annotations and pass these position types

through the algorithm to get sized types tk . Next, we check
that the (co)fixpoint bodies have the successor-sized types of

tk when the (co)fixpoints have types tk in the environment.

Lastly, we call RecCheckLoop, and return the constraints it

gives us, along with themth (co)fixpoint type.

Notice that in setRecStars and setCorecStars, we anno-

tate all possible (co)inductive types in the (co)fixpoint type

with position annotations. Evidently not all (co)fixpoints are

size-preserving; some of those position annotations (exclud-

ing the one on the recursive argument type or the corecursive

return type) will need to be removed. RecCheckLoop is a

recursive function that calls RecCheck, which checks that

a given set of stage constraints can be satisfied; if it cannot,

then RecCheckLoop removes the position annotations that

RecCheckLoop has found to be problematic, then retries.

More specifically, RecCheck can fail with RecCheckFail,

which contains a set V of position stage variables that must

be set to infinity; since position stage variables always ap-

pear on size-preserved types, they cannot be infinite. Rec-

CheckLoop then removes V from the set of position stage

variables, allowing them to be set to infinity, and recursively

calls itself. The number of position stage variables from the

(co)fixpoint type shrinks on every iteration until no more

can be removed, at which point RecCheckLoop fails the

algorithm. An OCaml-like pseudocode implementation of

RecCheckLoop is provided by Figure 14.

3.3 RecCheck
As in previous work on CCω̂ with coinductive streams [5]

and in CIĈ , we use the same RecCheck algorithm from F̂ [1].

Its goal is to check a set of constraints for circular substaging

relations, set the stage variables involved in the cycles to ∞,

and to produce a new set of constraints without these prob-

lems or fail, indicating nontermination or nonproductivity.

It takes four arguments:

• A set of substaging constraints C .
• The stage variable ρ of the annotation on the type of the

recursive argument (for fixpoints) or on the return type

(for cofixpoints). While other arguments (and the return

type, for fixpoints) may optionally be marked as sized-

preserving, each (co)fixpoint type requires at least ρ for

the primary (co)recursive type.

• A set of stage variables V ∗
that must be set to some non-

infinite stage. These are the stage annotations with posi-

tion stage variables found in the (co)fixpoint type. Note

that ρ ∈ V ∗
.

• A set of stage variables V , that must be set to ∞. These

are all other non-position stage annotations, found in the

(co)fixpoint type, the (co)fixpoint body, and outside the

(co)fixpoint.

Here, we begin to treat C as a weighted, directed graph.

Each stage variable corresponds to a node, and each substag-

ing relation is an edge from the lower to the upper variable.

A stage annotation consists of a stage variable with an ar-

bitrary finite nonnegative number of successor "hats"; we

can write the number as a superscript, as in υ̂n . Then given

a substaging relation υ̂n1

1
⊑ υ̂n2

2
, the weight of the edge from

υ1 to υ2 is n2 − n1. Substagings from ∞ are given an edge

weight of 0.

Given a set of stage variables V , its upward closure
⊔
V

in C is the set of stage variables that can be reached from

V by travelling along the edges of C; that is, υ1 ∈ V ∧ υ̂n1

1
⊑

υ̂n2

2
=⇒ υ2 ∈ V . Similarly, the downward closure

d
V in C

is the set of stage variables that can reach V by travelling

along the edges of C , or υ2 ∈ V ∧ υ̂n1

1
⊑ υ̂n2

2
=⇒ υ1 ∈ V .

10

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Practical Sized Typing for Coq CPP ’20, 20 – 21 January 2020, New Orleans, LA, United States

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

We use the notation υ ⊑ V to denote the set of constraints

from υ to each stage variable in V .

The algorithm proceeds as follows:

1. LetV ι =
d
V ∗

, and add ρ ⊑ V ι
toC . This ensures that ρ is

the smallest stage variable among all the noninfinite stage

variables.

2. Find all negative cycles in C , and let V −
be the set of all

stage variables present in some negative cycle.

3. Remove all edges with stage variables in V −
from C , and

add∞ ⊑ V −
. Since ∞̂ ⊑ ∞, this is the only way to resolve

negative cycles.

4. Add ∞ ⊑
(⊔

V , ∩
⊔
V ι)

to C .
5. Let V⊥ = (

⊔
{∞}) ∩V ι

. This is the set of stage variables

that we have determined to both be infinite and noninfi-

nite. If V⊥
is empty, then return C .

6. Otherwise, let V = V⊥ ∩ (V ∗ \ {ρ}). This is the set of

contradictory position stage variables excluding ρ, which
we can remove from P in RecCheckLoop. If V is empty,

there are no position stage variables left to remove, so

the check and therefore the size inference algorithm fails.

If V is not empty, fail with RecCheckFail(V), which is

handled by RecCheckLoop.

3.4 Well-Formedness
A self-contained chunk of code, be it a file or a module, con-

sists of a sequence of (co)inductive definitions, or signatures,

and programs, or global declarations. For our purposes, we

assume that there is a singular well-formed signature defined

independently. Assuring that the chunk of code is properly

typed is then performing size inference on each declaration

of ΓG . These are given by Rules (a-global-empty), (a-global-

assum), and (a-global-def). The first two are straightforward.

In Rule (a-global-def), we obtain two types: u, the inferred
sized type of the definition body, and t , its sized declared type.
Evidently,u must subtype t . Furthermore, onlyu has position

stage variables due to the body e , so we use getPosVars to

find the stage variables of t in the same locations as the

position stage variables of u. For instance, if P = {ρ},

getPosVars(Natυ → Nat
υ′,Natρ → Nat

υ′′) = {υ}.

These then get added to P so that | · |ι properly erases the

right stage annotations to global annotations. We cannot

simply replace t with u, since t may have a more general

type, e.g. u = Nat → Set vs. t = Nat → Type.

4 Examples
Returning to our example programs in Section 1, in CIC∗̂

they would be written as:

Def minus: Natι → Natι → Natι B
Def div: Natι → Nat → Natι B

The body of div only needs to know that minus has type

Nat
ι → Nat

ι → Nat
ι
and nothing else. Furthermore, we

have no problems using variables in our fixpoint types (note

that we use 1-based indexing):

Def aNat: Set B Nat.
Def add: aNat⟨ι ⟩ → aNat → aNat B

fix⟨1⟩,1 add': aNat⟨∗⟩ → Nat → Nat B

For the following examples we use a more succinct, Coq-

like syntax for brevity, adding in global annotations where

necessary. Assuming the usual definition for Lists and Bools,
and the usual if-then-else syntax, we can construct a filter
function with size-preserving types, since the output list is

never longer than the input list.

Definition filter:
(A: Set) -> (A -> Bool) -> Listι A -> Listι A :=
fix filter' A pred (l: List∗ A): List∗ A :=
match l with

| Nil => Nil
| Cons _ hd tl =>

if pred hd
then Cons A hd (filter' A pred tl)
else (filter' tl)

end.
Definition append:

(A: Set) -> Listι A -> List A -> List A :=

Wealso have an append function that is not size-preserving.
Now we are all set to implement quicksort on Nats:

Definition quicksort:
(A: Set) -> Listι Nat -> List Nat :=
fix quicksort' A (l: List∗ Nat): List Nat :=
match l with
| Nil => Nil
| Cons _ hd tl => append A
(quicksort' (filter Nat (gtb hd) tl))
(Cons Nat hd

(quicksort' (filter Nat (leb hd) tl)))
end.

Even though the output list has the same length as the input

list, there is no way to add sizes in our current size algebra,

so the return type of append is not annotated with the same

size as the input type of quicksort. While asserting that

quicksort does not change the length of the list requires

additional proof, the fact that it terminates is given to us by

virtue of being typeable.

On the other hand, it is because we cannot express any

size relations more complicated than size-preservation that

gcd, while terminating, is not typeable.

Definition modulo: Nat -> Natι -> Natι := . . .
Fail Definition gcd: Nat -> Nat -> Nat :=

fix gcd' a b :=
match a with
| O => b
| S a' => gcd' (modulo b a) a
end.

11

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

CPP ’20, 20 – 21 January 2020, New Orleans, LA, United States Anon.

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

Because modulo can only determine that the return type

is at most as large as its second argument, the first argument

to the recursive call in gcd’ has a type with the same size as

a, and is not deemed to decrease on its first argument.

The above examples are annotated CIĈ∗ implementations.

In our Coq implementation, we write the Gallina equivalents

of each function, and size inference infers the annotations

for the above examples.

In our implementation, we can separately enable or disable

syntactic guard checking and sized type checking.

Unset Guard Checking.
Set Sized Typing.

This way, we can type check either: (1) programs that type

check only with sized types, or (2) programs that type check

only with syntactic guard checking.

5 Related Work
This work is based on CIĈ [2], which describes CIC with

sized types and a size inference algorithm. It assumes that

position annotations are given by the user, requires each

parameter of (co)inductive types to be assigned polarities,

and deals only with terms. We have added on top of it global

declarations, constants and variables annotated by a vector

of stage annotations, their δ -/∆-reductions, a let-in construc-

tion, an explicit treatment of mutually-defined (co)inductive

types and (co)fixpoints, and an intermediate procedure Rec-

CheckLoop to handle missing position annotations, while

removing parameter polarities and subtyping rules based on

these polarities.

The language CIĈ [4] is similar to CIĈ , described in

greater detail, but with one major difference: CIĈ disallows

stage variables in the bodies of abstractions, in the argu-

ments of applications, and in case analysis branches, making

CIĈ a strict subset of CIĈ . Any stage annotations found

in these locations must be set to ∞. This solves the problem

of knowing which stage annotations to use when using a

variable defined as, for instance, an inductive type, simply by

disallowing stage annotations in these definitions. However,

this prevents us from using a variable as the (co)recursive

type of a (co)fixpoint, and forces these types to be literal

(co)inductive types. In practice, such as in Coq’s default theo-

rems and libraries, aliases are often defined for (co)inductive

types, so we have worked around it with annotated variables

and constants.

The implementation of RecCheck comes from F̂ [1], an

extension of System F with type-based termination used

sized types. Rules relating to coinductive constructions and

cofixpoints comes from the natural extension of CCω̂ [5],

which describes only infinite streams. Additionally, the judge-

ment syntax for describing the size inference algorithm

comes from CCω̂ and CIĈl [6].

Whereas our successor sized types uses a size algebra that

only has a successor operation, linear sized types in CIĈl ex-

tends the algebra by including stage annotations of the form

n · S , so that all annotations are of the form n · υ +m, where

m is the number of "hats". Although this causes the time

complexity of their RecCheck procedure to be exponential

in the number of stage variables, the (co)fixpoints written

in practice may not so complicated as to be meaningfully

detrimental compared to the benefits that linear sized types

would bring. The set of typeable (and therefore terminating

or productive) functions would be expanded even further;

functions such as append and quicksort could be typed as

size-preserving in addition to being terminating. If successor

sized types prove to be practically useable in Coq, augment-

ing the type system to linear sized types would be a valuable

consideration.

Well-founded sized types in CIC⊑̂ [7] are yet another ex-

tension of successor sized types. This unpublished manu-

script contains a type system, some metatheoretical results,

and a size inference algorithm. In essence, it preserves subject

reduction for coinductive constructions, and also expands

the set of typeable functions.

6 Conclusion
We have presented a design and implementation of sized

types for Coq. Our work extends the core language and

type checking algorithm of prior theoretical work on sized

types for CIC with pragmatic features found in Gallina, such

as global definitions, and extends the inference algorithm

to infer sizes from completely unannotated Gallina terms

to enable backwards compatibility. We implement the de-

sign presented in this paper as an extension to Coq’s kernel,

which can be found in the anonymous supplementary mate-

rials. The design and implementation can be used alone or

in conjunction with syntactic guard checking to maximize

typeability and compatibility.

References
[1] G Barthe, B Gregoire, and F Pastawski. 2005. Practical inference for

type-based termination in a polymorphic setting. In Typed Lambda
Calculi and Applications (Lecture Notes in Computer Science), Urzyczyn,
P (Ed.), Vol. 3461. Springer-Verlag Berlin, Heidelberger Platz 3, D-14197

Berlin, Germany, 71–85. https://doi.org/10.1007/11417170_7
[2] Gilles Barthe, Benjamin Gregoire, and Fernando Pastawski. 2006. CIĈ

: Type-Based Termination of Recursive Definitions in the Calculus

of Inductive Constructions. In Logic for Programming, Artificial In-
telligence, and Reasoning, Proceedings (Lecture Notes in Artificial In-
telligence), Hermann, M and Voronkov, A (Ed.), Vol. 4246. Springer-

Verlag Berlin, Heidelberger Platz 3, D-14197 Berlin, Germany, 257–271.

https://doi.org/10.1007/11916277_18
[3] Fairouz Kamareddine, Twan Laan, and Rob Nederpelt. 2005. Pure Type

Systems with definitions. Springer Netherlands, Dordrecht, 233–241.
https://doi.org/10.1007/1-4020-2335-9_9

[4] Jorge Luis Sacchini. 2011. On type-based termination and depen-
dent pattern matching in the calculus of inductive constructions. The-
ses. École Nationale Supérieure des Mines de Paris. https://pastel.

12

https://doi.org/10.1007/11417170_7
https://doi.org/10.1007/11916277_18
https://doi.org/10.1007/1-4020-2335-9_9
https://pastel.archives-ouvertes.fr/pastel-00622429
https://pastel.archives-ouvertes.fr/pastel-00622429
https://pastel.archives-ouvertes.fr/pastel-00622429

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

Practical Sized Typing for Coq CPP ’20, 20 – 21 January 2020, New Orleans, LA, United States

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

archives-ouvertes.fr/pastel-00622429
[5] Jorge Luis Sacchini. 2013. Type-Based Productivity of Stream Defini-

tions in the Calculus of Constructions. In 2013 28TH Annual IEEE/ACM
Symposium on Logic in Computer Science (LICS) (IEEE Symposium on
Logic in Computer Science). IEEE, 345 E 47th St., New York, NY 10017

USA, 233–242. https://doi.org/10.1109/LICS.2013.29
[6] Jorge Luis Sacchini. 2014. Linear Sized Types in the Calculus of Con-

structions. In Functional and Logic Programming, FLOPS 2014 (Lecture
Notes in Computer Science), Codish, M and Sumii, E (Ed.), Vol. 8475.

Springer-Verlag Berlin, Heidelberger Platz 3, D-14197 Berlin, Germany,

169–185. https://doi.org/10.1007/978-3-319-07151-0_11
[7] Jorge Luis Sacchini. 2015. Well-Founded Sized Types

in the Calculus of (Co)Inductive Constructions. (2015).

https://web.archive.org/web/20160606143713/http://www.qatar.
cmu.edu/~sacchini/well-founded/well-founded.pdf Unpublished

paper.

[8] The Coq Development Team. 2019. The Coq Proof Assistant, version

8.9.0. (Jan. 2019). https://doi.org/10.5281/zenodo.2554024

13

https://pastel.archives-ouvertes.fr/pastel-00622429
https://pastel.archives-ouvertes.fr/pastel-00622429
https://doi.org/10.1109/LICS.2013.29
https://doi.org/10.1007/978-3-319-07151-0_11
https://web.archive.org/web/20160606143713/http://www.qatar.cmu.edu/~sacchini/well-founded/well-founded.pdf
https://web.archive.org/web/20160606143713/http://www.qatar.cmu.edu/~sacchini/well-founded/well-founded.pdf
https://doi.org/10.5281/zenodo.2554024

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

CPP ’20, 20 – 21 January 2020, New Orleans, LA, United States Anon.

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

WF(Σ, ΓG , Γ) (x : t) ∈ Γ
(var-assum)

Σ, ΓG , Γ ⊢ x : t

WF(Σ, ΓG , Γ) (Assum x : t .) ∈ ΓG
(const-assum)

Σ, ΓG , Γ ⊢ x : t

WF(Σ, ΓG , Γ) (41,42) ∈ Axioms

(univ)

Σ, ΓG , Γ ⊢ 41 : 42

Σ, ΓG , Γ ⊢ e : t u : 4 t ≤ u
(conv)

Σ, ΓG , Γ ⊢ e : u

Σ, ΓG , Γ ⊢ t : 41 Σ, ΓG , Γ(x : t) ⊢ u : 42 (41,42,43) ∈ Rules

(prod)

Σ, ΓG , Γ ⊢ Πx : t .u : 43

Σ, ΓG , Γ ⊢ e1 : Πx : t .u Σ, ΓG , Γ ⊢ e2 : t
(app)

Σ, ΓG , Γ ⊢ e1e2 : u[x B e2]

Figure 15. Typing rules common to CIC and CIĈ∗

Appendix A Supplementary Figures
Figure 16 lists the syntactic sugar we use in this work for

writing terms and metafunctions on terms. Figure 17 lists

the sets Axioms, Rules, and Elims, which are relations on

universes. They desribe how universes are typed, how prod-

ucts are typed, and what eliminations are allowed in case

analyses, respectively. Figure 15 gives the typing rules for

assumptions, universes, products, applications, and convert-

ibility, which are all common to CIC.

dom(∆) 7→ x domain of assum. env.

ea 7→ (((ea1) . . .)an) multiple application

t → u 7→ Π_ : t .u nondependent product

(x : t) → u 7→ Πx : t .u dependent product

Π∆.t 7→ Πx1 : t1. . . .Πxn : tn .t product from assums.

SV(e1, e2) 7→ SV(e1) ∪ SV(e2) stage vars. of terms

SV(a) 7→ SV(a1) ∪ · · · ∪ SV(an) stage vars. of terms

where a = a1 . . . an

∆ = (x1 : t1) . . . (xn : tn)

Figure 16. Syntactic sugar for terms and metafunctions

Axioms = {(Prop,Type
1
), (Set,Type

1
), (Typei ,Typei+1)}

Rules = {(4, Prop, Prop) : 4 ∈ U }

∪ {(4, Set, Set) : 4 ∈ {Prop, Set}}

∪ {(Typei ,Typej ,Typek) : k = max(i, j)}

Elims = {(4i ,4, Ii) : 4i ∈ {Set,Type},4 ∈ U , Ii ∈ Σ}

∪ {(Prop, Prop, Ii) : Ii ∈ Σ}

∪ {(Prop,4, Ii) : 4 ∈ U , Ii ∈ Σ, Ii is empty or singleton}

Figure 17. Universe relations: Axioms, Rules, and Elimina-

tions

14

	Abstract
	1 Introduction
	2 CIC^*
	2.1 Notation
	2.2 Reduction Rules
	2.3 Subtyping Rules
	2.4 Typing Rules

	3 Size Inference
	3.1 Notation
	3.2 Inference Algorithm
	3.3 RecCheck
	3.4 Well-Formedness

	4 Examples
	5 Related Work
	6 Conclusion
	References
	A Supplementary Figures

